На прочность и долговечность конструкций крыш существенное влияние оказывают снег, ветер, дождь, перепады температуры и другие физико-механические факторы, воздействующие на здание.

Точную нагрузку от веса снегового покрова, требуемую для расчета несущей способности стропильных систем в конкретном месте строительства, нужно выяснить в районных строительных организациях или установить по картам СП 20.13330.2011 «Нагрузки и воздействия», вложенным в этот Свод Правил.

На рис. 3 и таблице 1 показаны нагрузки от веса снегового покрова для расчета по первой и второй группе предельных состояний (с коэффициентом 0,7 и без него).

Таблица 1

Расчетный вес снегового покрова Q на 1 м² горизонтальной поверхности земли
Снеговые районы Российской Федерации 1 2 3 4 5 6 7 8
Q , кПа (кг/м²) 0,8 (80) 1,2 (120) 1,8 (180) 2,4 (240) 3,2 (320) 4,0 (400) 4,8 (480) 5,6 (560)
рис. 3. Районирование территории Российской Федерации по расчетному значению веса снегового покрова.

Расчет несущих конструкций зданий и сооружений выполняют по методу предельных состояний, при которых конструкции теряют способность сопротивляться внешним воздействиям, либо получают недопустимые деформации или местные повреждения.

Предельных состояний, по которым производится расчет несущих конструкций крыши, может быть два:

  • Первое предельное состояние достигается в том случае, когда в строительной конструкции исчерпана несущая способность (прочность, устойчивость, выносливость), а попросту, происходит разрушение конструкции. Расчет несущих конструкций ведется на максимально возможные нагрузки. Это условие записывается формулами: σ ≤ R или τ ≤ R, означающими, что напряжения развивающиеся в конструкции при приложении нагрузки не должны превышать предельно допустимых;
  • Второе предельное состояние характеризуется развитием чрезмерных деформаций от статических или динамических нагрузок. В конструкции происходят недопустимые прогибы, раскрываются узлы сочленений. Однако в целом конструкция не разрушается, но дальнейшая ее эксплуатация без ремонта невозможна. Это условие записывается формулой: f ≤ f, означающей, что прогиб появляющийся в конструкции при приложении нагрузки не должен превышать предельно допустимого прогиба. Нормируемый прогиб балки, для всех элементов крыши (стропил, прогонов и брусков обрешетки) составляет L/200 (1/200 длины проверяемого пролета балки L), см.

Расчет стропильной системы скатных крыш ведется по обоим предельным состояниям. Цель расчета: не допустить разрушения конструкций либо их прогиба выше допустимого предела. Для снеговых нагрузок, действующих на крышу, несущий каркас крыши рассчитывается по первой группе состояний — на полный вес снегового покрова Q. Эту величину принято называть расчетной нагрузкой т.к. в данном случае речь идет только о весе снега, то ее можно обозначить, как Q. Для расчета по второй группе предельных состояний: вес снега учитывается с коэффициентом 0,7 т.е. расчет ведется на снеговую нагрузку равную 0,7Q — эту величину можно обозначить, как Q (расчетная нормативная нагрузка от веса снега).

В зависимости от уклона крыши и направления преобладающих ветров снега на крыше может быть значительно меньше и, как ни странно, больше, чем на плоской поверхности земли. При возникновении в атмосфере таких явлений, как снежный буран или метель, снежинки, подхваченные ветром, переносятся на подветренную сторону. После прохождения препятствия в виде конька крыши скорость движения нижних потоков воздуха снижается по отношению к верхним и снежинки оседают на крышу. В результате с одной стороны крыши снега лежит меньше нормы, а с другой больше (рис. 4).

Образование снеговых «мешков» на крышах с уклонами скатов от 20 до 30°
рис. 4. Образование снеговых «мешков» на крышах с уклонами скатов от 20 до 30°

Снижение и увеличение снеговых нагрузок, зависящих от направления ветра и угла наклона скатов, учитываются коэффициентом µ. Например, на двухскатных крышах с углом скатов выше 20° и меньше 30° с наветренной стороны будет лежать 75%, а с подветренной 125% от того количества снега, который лежит на плоской поверхности земли. Значение других коэффициентов µ приведено в СНиП 2.01.07-85 и на рисунке 5.

Схемы снеговых нагрузок и коэффициенты µ
рис. 5. Схемы нормативных снеговых нагрузок и коэффициенты µ

Толстый слой снега, скапливающийся на крыше и превышающий средненормативную толщину, называется снеговым «мешком». Они скапливаются в ендовах — местах, где пересекаются две крыши и в местах с близко расположенными слуховыми окнами. Во всех местах, где высока вероятность возникновения снегового «мешка», ставят спаренные стропильные ноги и выполняют сплошную обрешетку. Также здесь делают подкровельную подложку, чаще всего из оцинкованной стали, вне зависимости от материала основного покрытия кровли.

Снеговой «мешок», образующийся с подветренной стороны, постепенно сползает и давит на свес кровли, пытаясь обломить его, поэтому свес кровли не должен превышать размеры, рекомендуемые изготовителем кровельного покрытия. Например, для обычной шиферной кровли его принимают равным 10 см.

Направление преобладающего ветра определяется по розе ветров для данного региона строительства. Таким образом, после проведения расчета с наветренной стороны будут установлены одиночные стропила, с подветренной — спаренные. Если данные по розе ветров отсутствуют, для расчета нужно выбрать максимальную нагрузку, словно все скаты крыши находятся с подветренной стороны и на них лежит снега больше, чем на земле.

С увеличением угла наклонов скатов снега на крыше остается меньше, он сползает под собственным весом. При углах скатов, равных или больше 60°, снега на крыше совсем не остается. Коэффициент µ в этом случае равен нулю. Для промежуточных значений углов скатов µ находится методом прямой интерполяции (усреднением). Так, например, для скатов с углом наклона 40° коэффициент µ будет равен 0,66, для 45° — 0,5, а для 50° — 0,33.

Таким образом, требуемые для подбора сечения стропил и шага их установки, расчетная и расчетная нормативная нагрузки от веса снега учитывающие углы наклонов скатов (Q и Q), рассчитываются как произведение полной нагрузки от веса снега (Q) и коэффициента µ:

Q= Q×µ — для первого предельного состояния (расчет на прочность);
Q= 0,7Q×µ — для второго предельного состояния (расчет на прогиб)

Для расчета по первому предельному состоянию полную снеговую нагрузку (Q) берем из таблицы 1. Для расчета по второму предельному состоянию, табличные данные веса снегового покрова умножаем на коэффициент 0,7 либо не производим этого арифметического действия и сразу выбираем нагрузку по карте рис. 3.

В регионах строительства, где средняя скорость ветра трех зимних месяцев превышает 4 м/с, на пологих крышах с уклоном от 12 до 20% (примерно от 7 до 12°), происходит частичный снос снега с крыши. В этом случае расчетная величина нагрузки от веса снега должна быть уменьшена применением коэффициента c = 0,85. Во всех других случаях, для скатных крыш применяется коэффициент c = 1. Окончательные формулы определения расчетной нагрузки и расчетной нормативной нагрузки от веса снега, учитывающие наклон скатов и ветровой снос снега, будут выглядеть так:

Q= Q×µ×c — для первого предельного состояния (расчет на прочность);
Q= 0,7Q×µ×c — для второго предельного состояния (расчет на прогиб)

Снижение снеговой нагрузки c = 0,85 не распространяется: на крыши зданий в районах со среднемесячной температурой воздуха в январе выше -5°С, так как периодически образующаяся наледь препятствует сносу снега ветром; на крыши зданий, защищенных от прямого воздействия ветра соседними более высокими зданиями или лесом, удаленными менее чем на 10h, где h — разность высот соседнего и проектируемого зданий; Скорость ветра и среднесуточная температура января определяется по картам СП 20.13330.2011 (рис. 6 и 7).

Районирование территории Российской Федерации по средней скорости ветра, м/с, за зимний период
рис. 6. Районирование территории Российской Федерации по средней скорости ветра, м/с, за зимний период
Районирование территории Российской Федерации по средней месячной температуре воздуха, °С, в январе
рис. 7. Районирование территории Российской Федерации по средней месячной температуре воздуха, °С, в январе